ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2fvex GIF version

Theorem mpt2fvex 6011
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fmpt2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpt2fvex ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mpt2fvex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 5693 . 2 (𝑅𝐹𝑆) = (𝐹‘⟨𝑅, 𝑆⟩)
2 elex 2644 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ V)
32alimi 1396 . . . . . . . 8 (∀𝑦 𝐶𝑉 → ∀𝑦 𝐶 ∈ V)
4 vex 2636 . . . . . . . . 9 𝑧 ∈ V
5 2ndexg 5977 . . . . . . . . 9 (𝑧 ∈ V → (2nd𝑧) ∈ V)
6 nfcv 2235 . . . . . . . . . 10 𝑦(2nd𝑧)
7 nfcsb1v 2977 . . . . . . . . . . 11 𝑦(2nd𝑧) / 𝑦𝐶
87nfel1 2246 . . . . . . . . . 10 𝑦(2nd𝑧) / 𝑦𝐶 ∈ V
9 csbeq1a 2955 . . . . . . . . . . 11 (𝑦 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑦𝐶)
109eleq1d 2163 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (𝐶 ∈ V ↔ (2nd𝑧) / 𝑦𝐶 ∈ V))
116, 8, 10spcgf 2715 . . . . . . . . 9 ((2nd𝑧) ∈ V → (∀𝑦 𝐶 ∈ V → (2nd𝑧) / 𝑦𝐶 ∈ V))
124, 5, 11mp2b 8 . . . . . . . 8 (∀𝑦 𝐶 ∈ V → (2nd𝑧) / 𝑦𝐶 ∈ V)
133, 12syl 14 . . . . . . 7 (∀𝑦 𝐶𝑉(2nd𝑧) / 𝑦𝐶 ∈ V)
1413alimi 1396 . . . . . 6 (∀𝑥𝑦 𝐶𝑉 → ∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
15 1stexg 5976 . . . . . . 7 (𝑧 ∈ V → (1st𝑧) ∈ V)
16 nfcv 2235 . . . . . . . 8 𝑥(1st𝑧)
17 nfcsb1v 2977 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶
1817nfel1 2246 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V
19 csbeq1a 2955 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐶 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
2019eleq1d 2163 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐶 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
2116, 18, 20spcgf 2715 . . . . . . 7 ((1st𝑧) ∈ V → (∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
224, 15, 21mp2b 8 . . . . . 6 (∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
2314, 22syl 14 . . . . 5 (∀𝑥𝑦 𝐶𝑉(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
2423alrimiv 1809 . . . 4 (∀𝑥𝑦 𝐶𝑉 → ∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
25243ad2ant1 967 . . 3 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → ∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
26 opexg 4079 . . . 4 ((𝑅𝑊𝑆𝑋) → ⟨𝑅, 𝑆⟩ ∈ V)
27263adant1 964 . . 3 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → ⟨𝑅, 𝑆⟩ ∈ V)
28 fmpt2.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
29 mpt2mptsx 6005 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
3028, 29eqtri 2115 . . . 4 𝐹 = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
3130mptfvex 5424 . . 3 ((∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V ∧ ⟨𝑅, 𝑆⟩ ∈ V) → (𝐹‘⟨𝑅, 𝑆⟩) ∈ V)
3225, 27, 31syl2anc 404 . 2 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝐹‘⟨𝑅, 𝑆⟩) ∈ V)
331, 32syl5eqel 2181 1 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 927  wal 1294   = wceq 1296  wcel 1445  Vcvv 2633  csb 2947  {csn 3466  cop 3469   ciun 3752  cmpt 3921   × cxp 4465  cfv 5049  (class class class)co 5690  cmpt2 5692  1st c1st 5947  2nd c2nd 5948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fo 5055  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950
This theorem is referenced by:  mpt2fvexi  6014  oaexg  6249  omexg  6252  oeiexg  6254
  Copyright terms: Public domain W3C validator