ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2v GIF version

Theorem mpt2v 5720
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpt2v (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpt2v
StepHypRef Expression
1 df-mpt2 5639 . 2 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
2 vex 2622 . . . . 5 𝑥 ∈ V
3 vex 2622 . . . . 5 𝑦 ∈ V
42, 3pm3.2i 266 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
54biantrur 297 . . 3 (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶))
65oprabbii 5686 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
71, 6eqtr4i 2111 1 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wcel 1438  Vcvv 2619  {coprab 5635  cmpt2 5636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621  df-oprab 5638  df-mpt2 5639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator