![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfiotadxy | GIF version |
Description: Deduction version of nfiotaxy 4979. (Contributed by Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
nfiotadxy.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotadxy.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotadxy | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 4976 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1466 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotadxy.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotadxy.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | nfcv 2228 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
6 | nfcv 2228 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑧 | |
7 | 5, 6 | nfeq 2236 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝑧 |
8 | 7 | a1i 9 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) |
9 | 4, 8 | nfbid 1525 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
10 | 3, 9 | nfald 1690 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
11 | 2, 10 | nfabd 2247 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
12 | 11 | nfunid 3658 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
13 | 1, 12 | nfcxfrd 2226 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1287 = wceq 1289 Ⅎwnf 1394 {cab 2074 Ⅎwnfc 2215 ∪ cuni 3651 ℩cio 4973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-sn 3450 df-uni 3652 df-iota 4975 |
This theorem is referenced by: nfiotaxy 4979 nfriotadxy 5608 |
Copyright terms: Public domain | W3C validator |