![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfiseq | GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
nfiseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfiseq.2 | ⊢ Ⅎ𝑥 + |
nfiseq.3 | ⊢ Ⅎ𝑥𝐹 |
nfiseq.4 | ⊢ Ⅎ𝑥𝑆 |
Ref | Expression |
---|---|
nfiseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹, 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iseq 9741 | . 2 ⊢ seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
2 | nfcv 2223 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
3 | nfiseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
4 | 2, 3 | nffv 5260 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
5 | nfiseq.4 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
6 | nfcv 2223 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 + 1) | |
7 | nfcv 2223 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
8 | nfiseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
9 | nfiseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
10 | 9, 6 | nffv 5260 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑦 + 1)) |
11 | 7, 8, 10 | nfov 5614 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + (𝐹‘(𝑦 + 1))) |
12 | 6, 11 | nfop 3612 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉 |
13 | 4, 5, 12 | nfmpt2 5652 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉) |
14 | 9, 3 | nffv 5260 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
15 | 3, 14 | nfop 3612 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
16 | 13, 15 | nffrec 6093 | . . 3 ⊢ Ⅎ𝑥frec((𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
17 | 16 | nfrn 4638 | . 2 ⊢ Ⅎ𝑥ran frec((𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
18 | 1, 17 | nfcxfr 2220 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹, 𝑆) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2210 〈cop 3425 ran crn 4402 ‘cfv 4969 (class class class)co 5591 ↦ cmpt2 5593 freccfrec 6087 1c1 7254 + caddc 7256 ℤ≥cuz 8914 seqcseq 9740 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2614 df-un 2988 df-in 2990 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-mpt 3867 df-xp 4407 df-cnv 4409 df-dm 4411 df-rn 4412 df-res 4413 df-iota 4934 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-recs 6002 df-frec 6088 df-iseq 9741 |
This theorem is referenced by: nfsum1 10567 nfsum 10568 |
Copyright terms: Public domain | W3C validator |