ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2df GIF version

Theorem ovmpt2df 5710
Description: Alternate deduction version of ovmpt2 5714, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpt2df.1 (𝜑𝐴𝐶)
ovmpt2df.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpt2df.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpt2df.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
ovmpt2df.5 𝑥𝐹
ovmpt2df.6 𝑥𝜓
ovmpt2df.7 𝑦𝐹
ovmpt2df.8 𝑦𝜓
Assertion
Ref Expression
ovmpt2df (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt2df
StepHypRef Expression
1 nfv 1462 . 2 𝑥𝜑
2 ovmpt2df.5 . . . 4 𝑥𝐹
3 nfmpt21 5649 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
42, 3nfeq 2230 . . 3 𝑥 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
5 ovmpt2df.6 . . 3 𝑥𝜓
64, 5nfim 1505 . 2 𝑥(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
7 ovmpt2df.1 . . . 4 (𝜑𝐴𝐶)
8 elex 2621 . . . 4 (𝐴𝐶𝐴 ∈ V)
97, 8syl 14 . . 3 (𝜑𝐴 ∈ V)
10 isset 2616 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
119, 10sylib 120 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
12 ovmpt2df.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
13 elex 2621 . . . . 5 (𝐵𝐷𝐵 ∈ V)
1412, 13syl 14 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
15 isset 2616 . . . 4 (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵)
1614, 15sylib 120 . . 3 ((𝜑𝑥 = 𝐴) → ∃𝑦 𝑦 = 𝐵)
17 nfv 1462 . . . 4 𝑦(𝜑𝑥 = 𝐴)
18 ovmpt2df.7 . . . . . 6 𝑦𝐹
19 nfmpt22 5650 . . . . . 6 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
2018, 19nfeq 2230 . . . . 5 𝑦 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21 ovmpt2df.8 . . . . 5 𝑦𝜓
2220, 21nfim 1505 . . . 4 𝑦(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
23 oveq 5596 . . . . . 6 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
24 simprl 498 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥 = 𝐴)
25 simprr 499 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦 = 𝐵)
2624, 25oveq12d 5608 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
277adantr 270 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐴𝐶)
2824, 27eqeltrd 2159 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥𝐶)
2912adantrr 463 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐵𝐷)
3025, 29eqeltrd 2159 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦𝐷)
31 ovmpt2df.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
32 eqid 2083 . . . . . . . . . . 11 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
3332ovmpt4g 5701 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐷𝑅𝑉) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3428, 30, 31, 33syl3anc 1170 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3526, 34eqtr3d 2117 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅)
3635eqeq2d 2094 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) ↔ (𝐴𝐹𝐵) = 𝑅))
37 ovmpt2df.4 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
3836, 37sylbid 148 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) → 𝜓))
3923, 38syl5 32 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
4039expr 367 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑦 = 𝐵 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)))
4117, 22, 40exlimd 1529 . . 3 ((𝜑𝑥 = 𝐴) → (∃𝑦 𝑦 = 𝐵 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)))
4216, 41mpd 13 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
431, 6, 11, 42exlimdd 1795 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wnf 1390  wex 1422  wcel 1434  wnfc 2210  Vcvv 2612  (class class class)co 5590  cmpt2 5592
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-setind 4315
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-iota 4933  df-fun 4970  df-fv 4976  df-ov 5593  df-oprab 5594  df-mpt2 5595
This theorem is referenced by:  ovmpt2dv  5711  ovmpt2dv2  5712
  Copyright terms: Public domain W3C validator