ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrnmpt2 GIF version

Theorem rexrnmpt2 5742
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
ralrnmpt2.2 (𝑧 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rexrnmpt2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝜓,𝑧   𝑥,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rexrnmpt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpt2 5737 . . . 4 ran 𝐹 = {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}
32rexeqi 2567 . . 3 (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑧 ∈ {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}𝜑)
4 eqeq1 2094 . . . . 5 (𝑤 = 𝑧 → (𝑤 = 𝐶𝑧 = 𝐶))
542rexbidv 2403 . . . 4 (𝑤 = 𝑧 → (∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶))
65rexab 2775 . . 3 (∃𝑧 ∈ {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}𝜑 ↔ ∃𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
7 rexcom4 2642 . . . 4 (∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑧𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑))
8 r19.41v 2523 . . . . 5 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
98exbii 1541 . . . 4 (∃𝑧𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
107, 9bitr2i 183 . . 3 (∃𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
113, 6, 103bitri 204 . 2 (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
12 rexcom4 2642 . . . . . 6 (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑧𝑦𝐵 (𝑧 = 𝐶𝜑))
13 r19.41v 2523 . . . . . . 7 (∃𝑦𝐵 (𝑧 = 𝐶𝜑) ↔ (∃𝑦𝐵 𝑧 = 𝐶𝜑))
1413exbii 1541 . . . . . 6 (∃𝑧𝑦𝐵 (𝑧 = 𝐶𝜑) ↔ ∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
1512, 14bitri 182 . . . . 5 (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
16 ralrnmpt2.2 . . . . . . . 8 (𝑧 = 𝐶 → (𝜑𝜓))
1716ceqsexgv 2744 . . . . . . 7 (𝐶𝑉 → (∃𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓))
1817ralimi 2438 . . . . . 6 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 (∃𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓))
19 rexbi 2502 . . . . . 6 (∀𝑦𝐵 (∃𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓) → (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
2018, 19syl 14 . . . . 5 (∀𝑦𝐵 𝐶𝑉 → (∃𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
2115, 20syl5bbr 192 . . . 4 (∀𝑦𝐵 𝐶𝑉 → (∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
2221ralimi 2438 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴 (∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓))
23 rexbi 2502 . . 3 (∀𝑥𝐴 (∃𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑦𝐵 𝜓) → (∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
2422, 23syl 14 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
2511, 24syl5bb 190 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  {cab 2074  wral 2359  wrex 2360  ran crn 4429  cmpt2 5636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-cnv 4436  df-dm 4438  df-rn 4439  df-oprab 5638  df-mpt2 5639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator