![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > selpw | GIF version |
Description: Setvar variable membership in a power class (common case). See elpw 3441. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
selpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2625 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 3441 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1439 ⊆ wss 3002 𝒫 cpw 3435 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2624 df-in 3008 df-ss 3015 df-pw 3437 |
This theorem is referenced by: ordpwsucss 4398 fabexg 5213 abexssex 5912 qsss 6367 mapval2 6451 pmsspw 6456 uniixp 6494 exmidpw 6680 npsspw 7093 restsspw 11725 istopon 11775 isbasis2g 11806 tgval2 11814 unitg 11825 distop 11848 cldss2 11869 ntreq0 11895 discld 11899 neisspw 11911 |
Copyright terms: Public domain | W3C validator |