![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sprmpt2 | GIF version |
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
Ref | Expression |
---|---|
sprmpt2.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)}) |
sprmpt2.2 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
sprmpt2.3 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝 → 𝜃)) |
sprmpt2.4 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ 𝜃} ∈ V) |
Ref | Expression |
---|---|
sprmpt2 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprmpt2.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)}) | |
2 | 1 | a1i 9 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)})) |
3 | oveq12 5675 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸)) | |
4 | 3 | adantl 272 | . . . . 5 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸)) |
5 | 4 | breqd 3862 | . . . 4 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑓(𝑣𝑊𝑒)𝑝 ↔ 𝑓(𝑉𝑊𝐸)𝑝)) |
6 | sprmpt2.2 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
7 | 6 | adantl 272 | . . . 4 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
8 | 5, 7 | anbi12d 458 | . . 3 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒) ↔ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓))) |
9 | 8 | opabbidv 3910 | . 2 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)}) |
10 | simpl 108 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V) | |
11 | simpr 109 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝐸 ∈ V) | |
12 | sprmpt2.3 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝 → 𝜃)) | |
13 | sprmpt2.4 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ 𝜃} ∈ V) | |
14 | 12, 13 | opabbrex 5707 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)} ∈ V) |
15 | 2, 9, 10, 11, 14 | ovmpt2d 5786 | 1 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1290 ∈ wcel 1439 Vcvv 2620 class class class wbr 3851 {copab 3904 (class class class)co 5666 ↦ cmpt2 5668 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-setind 4366 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |