ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sprmpt2 GIF version

Theorem sprmpt2 6021
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Hypotheses
Ref Expression
sprmpt2.1 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)})
sprmpt2.2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜒𝜓))
sprmpt2.3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))
sprmpt2.4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)
Assertion
Ref Expression
sprmpt2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)})
Distinct variable groups:   𝑒,𝐸,𝑓,𝑝,𝑣   𝑒,𝑉,𝑓,𝑝,𝑣   𝑒,𝑊,𝑣   𝜓,𝑒,𝑣
Allowed substitution hints:   𝜓(𝑓,𝑝)   𝜒(𝑣,𝑒,𝑓,𝑝)   𝜃(𝑣,𝑒,𝑓,𝑝)   𝑀(𝑣,𝑒,𝑓,𝑝)   𝑊(𝑓,𝑝)

Proof of Theorem sprmpt2
StepHypRef Expression
1 sprmpt2.1 . . 3 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)})
21a1i 9 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)}))
3 oveq12 5675 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸))
43adantl 272 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸))
54breqd 3862 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝑓(𝑣𝑊𝑒)𝑝𝑓(𝑉𝑊𝐸)𝑝))
6 sprmpt2.2 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜒𝜓))
76adantl 272 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝜒𝜓))
85, 7anbi12d 458 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → ((𝑓(𝑣𝑊𝑒)𝑝𝜒) ↔ (𝑓(𝑉𝑊𝐸)𝑝𝜓)))
98opabbidv 3910 . 2 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)})
10 simpl 108 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V)
11 simpr 109 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝐸 ∈ V)
12 sprmpt2.3 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))
13 sprmpt2.4 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)
1412, 13opabbrex 5707 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ∈ V)
152, 9, 10, 11, 14ovmpt2d 5786 1 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  Vcvv 2620   class class class wbr 3851  {copab 3904  (class class class)co 5666  cmpt2 5668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator