![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtr4i | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtr4.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtr4i | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtr4.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2093 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3059 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ⊆ wss 3000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 |
This theorem is referenced by: eqimss2i 3082 difdif2ss 3257 snsspr1 3591 snsspr2 3592 snsstp1 3593 snsstp2 3594 snsstp3 3595 prsstp12 3596 prsstp13 3597 prsstp23 3598 iunxdif2 3784 pwpwssunieq 3823 sssucid 4251 opabssxp 4525 dmresi 4780 cnvimass 4808 ssrnres 4886 cnvcnv 4896 cnvssrndm 4965 dmmpt2ssx 5983 tfrcllemssrecs 6131 sucinc 6220 mapex 6425 exmidpw 6678 casefun 6830 djufun 6839 ressxr 7585 ltrelxr 7601 nnssnn0 8730 un0addcl 8760 un0mulcl 8761 nn0ssxnn0 8793 fzssnn 9536 fzossnn0 9640 isumclim3 10871 isprm3 11432 phimullem 11533 tgvalex 11804 |
Copyright terms: Public domain | W3C validator |