ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eleqr GIF version

Theorem syl5eleqr 2204
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl5eleqr.1 𝐴𝐵
syl5eleqr.2 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
syl5eleqr (𝜑𝐴𝐶)

Proof of Theorem syl5eleqr
StepHypRef Expression
1 syl5eleqr.1 . 2 𝐴𝐵
2 syl5eleqr.2 . . 3 (𝜑𝐶 = 𝐵)
32eqcomd 2120 . 2 (𝜑𝐵 = 𝐶)
41, 3syl5eleq 2203 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-17 1489  ax-ial 1497  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-cleq 2108  df-clel 2111
This theorem is referenced by:  rabsnt  3564  0elnn  4492  tfrexlem  6185  rdgtfr  6225  rdgruledefgg  6226  hashinfom  10417  ennnfonelemhom  11773  exmid1stab  12887
  Copyright terms: Public domain W3C validator