![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eleqr | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eleqr.1 | ⊢ 𝐴 ∈ 𝐵 |
syl5eleqr.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
syl5eleqr | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eleqr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | syl5eleqr.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2120 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | syl5eleq 2203 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 df-clel 2111 |
This theorem is referenced by: rabsnt 3564 0elnn 4492 tfrexlem 6185 rdgtfr 6225 rdgruledefgg 6226 hashinfom 10417 ennnfonelemhom 11773 exmid1stab 12887 |
Copyright terms: Public domain | W3C validator |