ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eqbr GIF version

Theorem syl5eqbr 3908
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
syl5eqbr.1 𝐴 = 𝐵
syl5eqbr.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
syl5eqbr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl5eqbr
StepHypRef Expression
1 syl5eqbr.2 . 2 (𝜑𝐵𝑅𝐶)
2 syl5eqbr.1 . 2 𝐴 = 𝐵
3 eqid 2100 . 2 𝐶 = 𝐶
41, 2, 33brtr4g 3907 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299   class class class wbr 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876
This theorem is referenced by:  xp1en  6646  caucvgprlemm  7377  intqfrac2  9933  m1modge3gt1  9985  bernneq2  10254  reccn2ap  10921  eirraplem  11278  nno  11398  oddprmge3  11608  sqnprm  11609  oddennn  11697  strle2g  11832  strle3g  11833  1strstrg  11839  2strstrg  11841  rngstrg  11856  srngstrd  11863  lmodstrd  11874  ipsstrd  11882  topgrpstrd  11892  psmetge0  12259  pwf1oexmid  12780  trilpolemeq1  12817
  Copyright terms: Public domain W3C validator