![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqbr | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
syl5eqbr.1 | ⊢ 𝐴 = 𝐵 |
syl5eqbr.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
syl5eqbr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqbr.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | syl5eqbr.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2100 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr4g 3907 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 class class class wbr 3875 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 |
This theorem is referenced by: xp1en 6646 caucvgprlemm 7377 intqfrac2 9933 m1modge3gt1 9985 bernneq2 10254 reccn2ap 10921 eirraplem 11278 nno 11398 oddprmge3 11608 sqnprm 11609 oddennn 11697 strle2g 11832 strle3g 11833 1strstrg 11839 2strstrg 11841 rngstrg 11856 srngstrd 11863 lmodstrd 11874 ipsstrd 11882 topgrpstrd 11892 psmetge0 12259 pwf1oexmid 12780 trilpolemeq1 12817 |
Copyright terms: Public domain | W3C validator |