![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqbrr | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
syl5eqbrr.1 | ⊢ 𝐵 = 𝐴 |
syl5eqbrr.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
syl5eqbrr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqbrr.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | syl5eqbrr.1 | . 2 ⊢ 𝐵 = 𝐴 | |
3 | eqid 2083 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 3842 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 class class class wbr 3811 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2614 df-un 2988 df-sn 3428 df-pr 3429 df-op 3431 df-br 3812 |
This theorem is referenced by: enpr1g 6445 recexprlem1ssl 7095 addgt0 7829 addgegt0 7830 addgtge0 7831 addge0 7832 expge1 9829 ncoprmgcdne1b 10851 phicl2 10970 |
Copyright terms: Public domain | W3C validator |