![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqel | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqel.1 | ⊢ 𝐴 = 𝐵 |
syl5eqel.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
syl5eqel | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqel.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | syl5eqel.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
4 | 2, 3 | eqeltrd 2176 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 df-clel 2096 |
This theorem is referenced by: syl5eqelr 2187 csbexga 3996 otexg 4090 tpexg 4303 dmresexg 4778 f1oabexg 5313 funfvex 5370 riotaexg 5666 riotaprop 5685 fnovex 5736 ovexg 5737 fovrn 5845 fnovrn 5850 cofunexg 5940 cofunex2g 5941 abrexex2g 5949 xpexgALT 5962 mpofvex 6031 tfrex 6195 frec0g 6224 freccllem 6229 ecexg 6363 qsexg 6415 pmex 6477 elixpsn 6559 diffifi 6717 unfidisj 6739 prfidisj 6744 tpfidisj 6745 ssfirab 6750 ssfidc 6751 fnfi 6753 funrnfi 6758 iunfidisj 6762 infclti 6825 djuex 6843 ctssdclemr 6911 addvalex 7531 negcl 7833 intqfrac2 9933 intfracq 9934 frec2uzzd 10014 frecuzrdgrrn 10022 iseqf1olemqpcl 10110 seq3f1olemqsum 10114 bcval5 10350 xrmaxiflemval 10858 climmpt 10908 reccn2ap 10921 zsumdc 10992 fsumzcl2 11013 fsump1i 11041 fsumabs 11073 hash2iun1dif1 11088 mertenslemi1 11143 algrf 11519 algcvg 11522 algcvga 11525 algfx 11526 eucalgcvga 11532 eucalg 11533 crth 11692 phimullem 11693 ennnfonelemj0 11706 ennnfonelemom 11713 ressid 11802 1strbas 11840 2strbasg 11842 2stropg 11843 restid 11913 topnvalg 11914 topnidg 11915 topopn 11957 topcld 12060 uncld 12064 iuncld 12066 unicld 12067 tgrest 12120 restin 12127 cnco 12171 cnrest 12185 cnptoprest2 12190 lmss 12196 txbasval 12217 txcn 12225 cnmpt12f 12236 blres 12362 metrest 12434 qtopbasss 12443 tgqioo 12466 cncfmet 12492 cdivcncfap 12499 cnplimcim 12516 limccnpcntop 12520 dvfvalap 12523 bj-snexg 12691 trilpolemcl 12814 |
Copyright terms: Public domain | W3C validator |