![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqelr | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqelr.1 | ⊢ 𝐵 = 𝐴 |
syl5eqelr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
syl5eqelr | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqelr.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2099 | . 2 ⊢ 𝐴 = 𝐵 |
3 | syl5eqelr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
4 | 2, 3 | syl5eqel 2181 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 df-clel 2091 |
This theorem is referenced by: dmrnssfld 4728 cnvexg 5002 opabbrex 5731 offval 5901 resfunexgALT 5919 abrexexg 5927 abrexex2g 5929 opabex3d 5930 unfidisj 6712 nqprlu 7203 iccshftr 9560 iccshftl 9562 iccdil 9564 icccntr 9566 mertenslem2 11079 exprmfct 11546 0opn 11857 difopn 11960 tgrest 12021 cnmptid 12103 cnmptc 12104 |
Copyright terms: Public domain | W3C validator |