![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ss | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
syl5ss.1 | ⊢ 𝐴 ⊆ 𝐵 |
syl5ss.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
syl5ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ss.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | syl5ss.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3057 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-in 3027 df-ss 3034 |
This theorem is referenced by: cossxp2 4998 fimacnv 5481 smores2 6121 f1imaen2g 6617 phplem4dom 6685 isinfinf 6720 fidcenumlemrk 6770 casef 6888 genipv 7218 fzossnn0 9793 seq3split 10093 ctinf 11735 tgcl 12015 epttop 12041 ntrin 12075 cnconst2 12183 cnrest2 12186 cnptopresti 12188 cnptoprest2 12190 blin2 12360 limcdifap 12512 limcresi 12515 dvfgg 12530 |
Copyright terms: Public domain | W3C validator |