![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5sseq | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
syl5sseq.1 | ⊢ 𝐵 ⊆ 𝐴 |
syl5sseq.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
syl5sseq | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5sseq.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | syl5sseq.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | sseq2 3051 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
4 | 3 | biimpa 291 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
5 | 1, 2, 4 | sylancl 405 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ⊆ wss 3002 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3008 df-ss 3015 |
This theorem is referenced by: fssdm 5190 fndmdif 5420 fneqeql2 5424 fconst4m 5533 f1opw2 5866 ecss 6349 fopwdom 6608 ssenen 6623 phplem2 6625 fiintim 6695 casefun 6832 caseinj 6836 djufun 6842 djuinj 6844 nn0supp 8788 monoord2 9968 binom1dif 10944 |
Copyright terms: Public domain | W3C validator |