![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6breqr | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
syl6breqr.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
syl6breqr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
syl6breqr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6breqr.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | syl6breqr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2092 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | syl6breq 3882 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 class class class wbr 3843 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3450 df-pr 3451 df-op 3453 df-br 3844 |
This theorem is referenced by: fiunsnnn 6587 unsnfi 6619 exmidfodomrlemr 6818 exmidfodomrlemrALT 6819 gtndiv 8831 intqfrac2 9714 uzenom 9820 ege2le3 10948 eirraplem 11051 |
Copyright terms: Public domain | W3C validator |