![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eleq | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eleq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
syl6eleq.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
syl6eleq | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eleq.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | syl6eleq.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2173 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 df-clel 2091 |
This theorem is referenced by: syl6eleqr 2188 prid2g 3567 freccllem 6205 finomni 6883 exmidomniim 6884 caucvgprprlem2 7366 gt0srpr 7391 eluzel2 9123 fseq1p1m1 9657 fznn0sub2 9688 nn0split 9696 nnsplit 9697 exple1 10142 bcval5 10302 bcpasc 10305 zfz1isolemsplit 10374 seq3coll 10378 clim2ser 10895 clim2ser2 10896 iserex 10897 isermulc2 10898 iserle 10900 iserge0 10901 climub 10902 climserle 10903 serf0 10910 summodclem3 10938 summodclem2a 10939 fsum3 10945 sum0 10946 fsumcl2lem 10956 fsumadd 10964 isumclim3 10981 isumadd 10989 fsump1i 10991 fsummulc2 11006 cvgcmpub 11034 binom1dif 11045 isumshft 11048 isumsplit 11049 isumrpcl 11052 arisum2 11057 trireciplem 11058 geoserap 11065 geolim 11069 geo2lim 11074 cvgratnnlemnexp 11082 cvgratnnlemseq 11084 cvgratgt0 11091 mertenslemi1 11093 mertenslem2 11094 mertensabs 11095 efcvgfsum 11121 efcj 11127 effsumlt 11146 mod2eq1n2dvds 11321 algrp1 11470 phiprmpw 11640 crth 11642 phimullem 11643 istps 11897 topontopn 11902 cldrcl 11969 nnsf 12604 nninfsellemqall 12616 nninfomnilem 12619 |
Copyright terms: Public domain | W3C validator |