Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqbr GIF version

Theorem syl6eqbr 3912
 Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
syl6eqbr.1 (𝜑𝐴 = 𝐵)
syl6eqbr.2 𝐵𝑅𝐶
Assertion
Ref Expression
syl6eqbr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl6eqbr
StepHypRef Expression
1 syl6eqbr.2 . 2 𝐵𝑅𝐶
2 syl6eqbr.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 3885 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mpbiri 167 1 (𝜑𝐴𝑅𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1299   class class class wbr 3875 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082 This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876 This theorem is referenced by:  syl6eqbrr  3913  pm54.43  6957  nn0ledivnn  9395  xltnegi  9459  leexp1a  10189  facwordi  10327  faclbnd3  10330  resqrexlemlo  10625  efap0  11181  dvds1  11346  en1top  12028
 Copyright terms: Public domain W3C validator