![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqbr | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
syl6eqbr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6eqbr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
syl6eqbr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqbr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | syl6eqbr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 3885 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 167 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 class class class wbr 3875 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 |
This theorem is referenced by: syl6eqbrr 3913 pm54.43 6957 nn0ledivnn 9395 xltnegi 9459 leexp1a 10189 facwordi 10327 faclbnd3 10330 resqrexlemlo 10625 efap0 11181 dvds1 11346 en1top 12028 |
Copyright terms: Public domain | W3C validator |