![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqel | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqel.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6eqel.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
syl6eqel | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqel.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | syl6eqel.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
4 | 1, 3 | eqeltrd 2164 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: syl6eqelr 2179 snexprc 4021 onsucelsucexmidlem 4345 dcextest 4396 ovprc 5684 nnmcl 6242 xpsnen 6537 xpfi 6640 snexxph 6659 indpi 6901 nq0m0r 7015 genpelxp 7070 un0mulcl 8707 znegcl 8781 zeo 8851 eqreznegel 9099 xnegcl 9294 modqid0 9757 q2txmodxeq0 9791 iser0 9947 ser0 9949 expcllem 9966 m1expcl2 9977 bcval 10157 bccl 10175 hashinfom 10186 resqrexlemlo 10446 iserge0 10732 isumrblem 10765 fisumcvg 10766 fsum3cvg 10767 isummolem3 10770 isummolem2a 10771 fisumss 10784 binom 10878 bcxmas 10883 gcdval 11229 gcdcl 11236 lcmcl 11332 nnpredcl 11890 nninfsellemeqinf 11908 |
Copyright terms: Public domain | W3C validator |