![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqelr | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqelr.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
syl6eqelr.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
syl6eqelr | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqelr.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2090 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | syl6eqelr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | syl6eqel 2175 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1287 ∈ wcel 1436 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1379 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-4 1443 ax-17 1462 ax-ial 1470 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-cleq 2078 df-clel 2081 |
This theorem is referenced by: eusvnfb 4243 releldm2 5893 mapprc 6342 bren 6397 brdomg 6398 ctex 6403 mapen 6495 ssenen 6500 ioof 9298 hashfacen 10089 |
Copyright terms: Public domain | W3C validator |