![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqss | GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
syl6eqss.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6eqss.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
syl6eqss | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqss.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | syl6eqss.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | eqsstrd 3061 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ⊆ wss 3000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 |
This theorem is referenced by: syl6eqssr 3078 resasplitss 5203 fimacnv 5442 en2other2 6883 exmidfodomrlemim 6888 toponsspwpwg 11781 ntrss2 11882 bj-nntrans 12119 nninfsellemsuc 12176 |
Copyright terms: Public domain | W3C validator |