![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6rbbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl6rbbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
syl6rbbr.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
syl6rbbr | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6rbbr.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | syl6rbbr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | syl6rbb 196 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imimorbdc 834 baib 867 pm5.6dc 874 xornbidc 1328 mo2dc 2004 reu8 2812 sbc6g 2865 dfss4st 3233 r19.28m 3375 r19.45mv 3379 r19.44mv 3380 r19.27m 3381 ralsnsg 3484 ralsns 3485 iunconstm 3744 iinconstm 3745 unisucg 4250 relsng 4554 funssres 5069 fncnv 5093 dff1o5 5275 funimass4 5368 fneqeql2 5422 fnniniseg2 5436 rexsupp 5437 unpreima 5438 dffo3 5460 funfvima 5540 dff13 5561 f1eqcocnv 5584 fliftf 5592 isocnv2 5605 eloprabga 5749 mpt22eqb 5768 opabex3d 5906 opabex3 5907 elxp6 5954 elxp7 5955 sbthlemi5 6724 sbthlemi6 6725 genpdflem 7127 ltnqpr 7213 ltexprlemloc 7227 xrlenlt 7612 negcon2 7796 dfinfre 8478 elznn 8827 zq 9172 rpnegap 9227 modqmuladdnn0 9836 shftdm 10317 rexfiuz 10483 rexanuz2 10485 sumsplitdc 10887 fsum2dlemstep 10889 odd2np1 11212 divalgb 11264 infssuzex 11284 isprm4 11440 |
Copyright terms: Public domain | W3C validator |