![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6req | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl6req.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6req.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
syl6req | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6req.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | syl6req.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | syl6eq 2137 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2094 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: syl6reqr 2140 elxp4 4933 elxp5 4934 fo1stresm 5948 fo2ndresm 5949 eloprabi 5982 fo2ndf 6008 xpsnen 6593 xpassen 6602 ac6sfi 6670 undifdc 6690 ine0 7935 nn0n0n1ge2 8880 fzval2 9490 fseq1p1m1 9571 fsum2dlemstep 10891 modfsummodlemstep 10914 ef4p 11047 sin01bnd 11111 odd2np1 11214 sqpweven 11494 2sqpwodd 11495 |
Copyright terms: Public domain | W3C validator |