![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6reqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl6reqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6reqr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
syl6reqr | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6reqr.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | syl6reqr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2092 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | syl6req 2137 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-4 1445 ax-17 1464 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 |
This theorem is referenced by: iftrue 3398 iffalse 3401 difprsn1 3576 dmmptg 4928 relcoi1 4962 funimacnv 5090 dffv3g 5301 dfimafn 5353 fvco2 5373 isoini 5597 oprabco 5982 unfiexmid 6628 undifdc 6634 sbthlemi4 6669 sbthlemi5 6670 sbthlemi6 6671 supval2ti 6690 exmidfodomrlemim 6827 eqneg 8199 zeo 8851 fseq1p1m1 9508 iseqval 9871 iseqvalt 9873 seq3val 9874 hashfzo 10230 hashxp 10234 fsumconst 10848 modfsummod 10852 telfsumo 10860 mulgcd 11283 ialgrp1 11306 ialgcvg 11308 phiprmpw 11476 strslfv3 11539 |
Copyright terms: Public domain | W3C validator |