![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6sseqr | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
syl6ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
syl6ssr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
syl6sseqr | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ssr.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | syl6ssr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2104 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | syl6sseq 3095 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-in 3027 df-ss 3034 |
This theorem is referenced by: iunpw 4339 iotanul 5039 iotass 5041 tfrlem9 6146 tfrlemibfn 6155 tfrlemiubacc 6157 tfrlemi14d 6160 tfr1onlemssrecs 6166 tfr1onlemres 6176 tfrcllemres 6189 exmidfodomrlemr 6967 exmidfodomrlemrALT 6968 uznnssnn 9222 shftfvalg 10431 shftfval 10434 eltopss 11958 difopn 12059 tgrest 12120 txuni2 12206 tgioo 12465 |
Copyright terms: Public domain | W3C validator |