![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposmpt2 | GIF version |
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
tposmpt2 | ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposmpt2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpt2 5695 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | ancom 263 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 3 | anbi1i 447 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)) |
5 | 4 | oprabbii 5742 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
6 | 1, 2, 5 | 3eqtri 2119 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
7 | 6 | tposoprab 6083 | . 2 ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
8 | df-mpt2 5695 | . 2 ⊢ (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} | |
9 | 7, 8 | eqtr4i 2118 | 1 ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1296 ∈ wcel 1445 {coprab 5691 ↦ cmpt2 5692 tpos ctpos 6047 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-fv 5057 df-oprab 5694 df-mpt2 5695 df-tpos 6048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |