![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpid11m | GIF version |
Description: The cross product of a class with itself is one-to-one. (Contributed by Jim Kingdon, 8-Dec-2018.) |
Ref | Expression |
---|---|
xpid11m | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) → ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpm 4652 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → dom (𝐴 × 𝐴) = 𝐴) | |
2 | 1 | adantr 270 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) → dom (𝐴 × 𝐴) = 𝐴) |
3 | dmeq 4632 | . . . . 5 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵)) | |
4 | 2, 3 | sylan9req 2141 | . . . 4 ⊢ (((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) ∧ (𝐴 × 𝐴) = (𝐵 × 𝐵)) → 𝐴 = dom (𝐵 × 𝐵)) |
5 | dmxpm 4652 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐵 × 𝐵) = 𝐵) | |
6 | 5 | ad2antlr 473 | . . . 4 ⊢ (((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) ∧ (𝐴 × 𝐴) = (𝐵 × 𝐵)) → dom (𝐵 × 𝐵) = 𝐵) |
7 | 4, 6 | eqtrd 2120 | . . 3 ⊢ (((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) ∧ (𝐴 × 𝐴) = (𝐵 × 𝐵)) → 𝐴 = 𝐵) |
8 | 7 | ex 113 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) → ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵)) |
9 | xpeq12 4455 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | |
10 | 9 | anidms 389 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
11 | 8, 10 | impbid1 140 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵) → ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∃wex 1426 ∈ wcel 1438 × cxp 4434 dom cdm 4436 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-br 3844 df-opab 3898 df-xp 4442 df-dm 4446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |