Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.38bOLD Structured version   Visualization version   GIF version

Theorem 19.38bOLD 1938
 Description: Obsolete version of 19.38b 1937 as of 9-Jul-2022. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
19.38bOLD (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))

Proof of Theorem 19.38bOLD
StepHypRef Expression
1 19.38 1934 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
2 df-nf 1880 . . 3 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
3 exim 1929 . . . 4 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
4 imim2 58 . . . 4 ((∃𝑥𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
53, 4syl5 34 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
62, 5sylbi 209 . 2 (Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
71, 6impbid2 218 1 (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198  ∀wal 1651  ∃wex 1875  Ⅎwnf 1879 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905 This theorem depends on definitions:  df-bi 199  df-ex 1876  df-nf 1880 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator