Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu4a Structured version   Visualization version   GIF version

Theorem 2reu4a 42014
Description: Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2736 with the additional requirement that the restricting classes are not empty (which is not necessary as shown in 2reu4 42015). (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
2reu4a ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))))
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2reu4a
StepHypRef Expression
1 reu3 3621 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧)))
2 reu3 3621 . . . 4 (∃!𝑦𝐵𝑥𝐴 𝜑 ↔ (∃𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤)))
31, 2anbi12i 622 . . 3 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧)) ∧ (∃𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
43a1i 11 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧)) ∧ (∃𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤)))))
5 an4 648 . . 3 (((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧)) ∧ (∃𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))) ↔ ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑦𝐵𝑥𝐴 𝜑) ∧ (∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
65a1i 11 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧)) ∧ (∃𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))) ↔ ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑦𝐵𝑥𝐴 𝜑) ∧ (∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤)))))
7 rexcom 3309 . . . . . 6 (∃𝑦𝐵𝑥𝐴 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜑)
87anbi2i 618 . . . . 5 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜑))
9 anidm 562 . . . . 5 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜑)
108, 9bitri 267 . . . 4 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑦𝐵𝑥𝐴 𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜑)
1110a1i 11 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑦𝐵𝑥𝐴 𝜑) ↔ ∃𝑥𝐴𝑦𝐵 𝜑))
12 r19.26 3274 . . . . . . . 8 (∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
13 nfra1 3150 . . . . . . . . . . . . . 14 𝑥𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)
1413r19.3rz 4284 . . . . . . . . . . . . 13 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤) ↔ ∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
1514bicomd 215 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
1615adantr 474 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
1716adantr 474 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
1817anbi2d 624 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → ((∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))))
19 jcab 515 . . . . . . . . . . . . . 14 ((𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ((𝜑𝑥 = 𝑧) ∧ (𝜑𝑦 = 𝑤)))
2019ralbii 3189 . . . . . . . . . . . . 13 (∀𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑦𝐵 ((𝜑𝑥 = 𝑧) ∧ (𝜑𝑦 = 𝑤)))
21 r19.26 3274 . . . . . . . . . . . . 13 (∀𝑦𝐵 ((𝜑𝑥 = 𝑧) ∧ (𝜑𝑦 = 𝑤)) ↔ (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (𝜑𝑦 = 𝑤)))
2220, 21bitri 267 . . . . . . . . . . . 12 (∀𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (𝜑𝑦 = 𝑤)))
2322ralbii 3189 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (𝜑𝑦 = 𝑤)))
24 r19.26 3274 . . . . . . . . . . 11 (∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (𝜑𝑦 = 𝑤)) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
2523, 24bitri 267 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
2625a1i 11 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))))
2718, 26bitr4d 274 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → ((∀𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
2812, 27syl5rbb 276 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))))
29 r19.26 3274 . . . . . . . . 9 (∀𝑦𝐵 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ (∀𝑦𝐵𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵𝑥𝐴 (𝜑𝑦 = 𝑤)))
30 nfra1 3150 . . . . . . . . . . . . 13 𝑦𝑦𝐵 (𝜑𝑥 = 𝑧)
3130r19.3rz 4284 . . . . . . . . . . . 12 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ↔ ∀𝑦𝐵𝑦𝐵 (𝜑𝑥 = 𝑧)))
3231ad2antlr 720 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ↔ ∀𝑦𝐵𝑦𝐵 (𝜑𝑥 = 𝑧)))
3332bicomd 215 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑦𝐵𝑦𝐵 (𝜑𝑥 = 𝑧) ↔ ∀𝑦𝐵 (𝜑𝑥 = 𝑧)))
34 ralcom 3308 . . . . . . . . . . 11 (∀𝑦𝐵𝑥𝐴 (𝜑𝑦 = 𝑤) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))
3534a1i 11 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑦𝐵𝑥𝐴 (𝜑𝑦 = 𝑤) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤)))
3633, 35anbi12d 626 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → ((∀𝑦𝐵𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))))
3729, 36syl5bb 275 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑦𝐵 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))))
3837ralbidv 3195 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ ∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴𝑦𝐵 (𝜑𝑦 = 𝑤))))
3928, 38bitr4d 274 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝐴𝑦𝐵 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤))))
40 r19.23v 3232 . . . . . . . . 9 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ↔ (∃𝑦𝐵 𝜑𝑥 = 𝑧))
41 r19.23v 3232 . . . . . . . . 9 (∀𝑥𝐴 (𝜑𝑦 = 𝑤) ↔ (∃𝑥𝐴 𝜑𝑦 = 𝑤))
4240, 41anbi12i 622 . . . . . . . 8 ((∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ ((∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ (∃𝑥𝐴 𝜑𝑦 = 𝑤)))
43422ralbii 3190 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ ∀𝑥𝐴𝑦𝐵 ((∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ (∃𝑥𝐴 𝜑𝑦 = 𝑤)))
4443a1i 11 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 (∀𝑦𝐵 (𝜑𝑥 = 𝑧) ∧ ∀𝑥𝐴 (𝜑𝑦 = 𝑤)) ↔ ∀𝑥𝐴𝑦𝐵 ((∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
45 neneq 3005 . . . . . . . . . . 11 (𝐴 ≠ ∅ → ¬ 𝐴 = ∅)
46 neneq 3005 . . . . . . . . . . 11 (𝐵 ≠ ∅ → ¬ 𝐵 = ∅)
4745, 46anim12i 608 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
4847olcd 907 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
49 dfbi3 1078 . . . . . . . . 9 ((𝐴 = ∅ ↔ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)))
5048, 49sylibr 226 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ ↔ 𝐵 = ∅))
51 nfre1 3213 . . . . . . . . . 10 𝑦𝑦𝐵 𝜑
52 nfv 2015 . . . . . . . . . 10 𝑦 𝑥 = 𝑧
5351, 52nfim 2001 . . . . . . . . 9 𝑦(∃𝑦𝐵 𝜑𝑥 = 𝑧)
54 nfre1 3213 . . . . . . . . . 10 𝑥𝑥𝐴 𝜑
55 nfv 2015 . . . . . . . . . 10 𝑥 𝑦 = 𝑤
5654, 55nfim 2001 . . . . . . . . 9 𝑥(∃𝑥𝐴 𝜑𝑦 = 𝑤)
5753, 56raaan2 41961 . . . . . . . 8 ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥𝐴𝑦𝐵 ((∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ (∃𝑥𝐴 𝜑𝑦 = 𝑤)) ↔ (∀𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
5850, 57syl 17 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∀𝑥𝐴𝑦𝐵 ((∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ (∃𝑥𝐴 𝜑𝑦 = 𝑤)) ↔ (∀𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
5958adantr 474 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 ((∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ (∃𝑥𝐴 𝜑𝑦 = 𝑤)) ↔ (∀𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
6039, 44, 593bitrd 297 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ (𝑧𝐴𝑤𝐵)) → (∀𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (∀𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
61602rexbidva 3266 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝐴𝑤𝐵 (∀𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))))
62 reeanv 3317 . . . 4 (∃𝑧𝐴𝑤𝐵 (∀𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∀𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤)) ↔ (∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤)))
6361, 62syl6rbb 280 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤)) ↔ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
6411, 63anbi12d 626 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑦𝐵𝑥𝐴 𝜑) ∧ (∃𝑧𝐴𝑥𝐴 (∃𝑦𝐵 𝜑𝑥 = 𝑧) ∧ ∃𝑤𝐵𝑦𝐵 (∃𝑥𝐴 𝜑𝑦 = 𝑤))) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))))
654, 6, 643bitrd 297 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880   = wceq 1658  wcel 2166  wne 2999  wral 3117  wrex 3118  ∃!wreu 3119  c0 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-v 3416  df-dif 3801  df-nul 4145
This theorem is referenced by:  2reu4  42015
  Copyright terms: Public domain W3C validator