![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sb6rfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 2sb6rf 2454 as of 13-Apr-2023. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
2sb5rf.1 | ⊢ Ⅎ𝑧𝜑 |
2sb5rf.2 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
2sb6rfOLD | ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r 2217 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)) | |
2 | sbequ12r 2217 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | sylan9bb 510 | . . . 4 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜑)) |
4 | 3 | pm5.74i 272 | . . 3 ⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
5 | 4 | 2albii 1802 | . 2 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
6 | 2sb5rf.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
7 | 6 | 19.23 2176 | . . . 4 ⊢ (∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
8 | 7 | albii 1801 | . . 3 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
9 | 2sb5rf.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
10 | 9 | 19.23 2176 | . . 3 ⊢ (∀𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
11 | 8, 10 | bitri 276 | . 2 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
12 | 2ax6e 2451 | . . 3 ⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | |
13 | pm5.5 363 | . . 3 ⊢ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ 𝜑)) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ ((∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ 𝜑) |
15 | 5, 11, 14 | 3bitrri 299 | 1 ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 ∃wex 1761 Ⅎwnf 1765 [wsb 2042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |