MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrd1eqwrdeqOLD Structured version   Visualization version   GIF version

Theorem 2swrd1eqwrdeqOLD 13744
Description: Obsolete version of pfxsuff1eqwrdeq 13778 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by Mario Carneiro/AV, 23-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
2swrd1eqwrdeqOLD ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem 2swrd1eqwrdeqOLD
StepHypRef Expression
1 lencl 13593 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2 nn0z 11728 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
3 elnnz 11714 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
43simplbi2 496 . . . . . . 7 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
51, 2, 43syl 18 . . . . . 6 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
65a1d 25 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ)))
763imp 1143 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
8 fzo0end 12855 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
97, 8syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
10 2swrdeqwrdeqOLD 13743 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
119, 10syld3an3 1534 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
12 hashneq0 13445 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
1312biimpd 221 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → 𝑊 ≠ ∅))
1413imdistani 566 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
15143adant2 1167 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1615adantr 474 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
17 swrdlsw 13742 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
1816, 17syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
19 breq2 4877 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (0 < (♯‘𝑊) ↔ 0 < (♯‘𝑈)))
20193anbi3d 1572 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈))))
21 hashneq0 13445 . . . . . . . . . . . . 13 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
2221biimpd 221 . . . . . . . . . . . 12 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) → 𝑈 ≠ ∅))
2322imdistani 566 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
24233adant1 1166 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
25 swrdlsw 13742 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2624, 25syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2720, 26syl6bi 245 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
2827impcom 398 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
29 oveq1 6912 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 1) = ((♯‘𝑈) − 1))
30 id 22 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
3129, 30opeq12d 4631 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩)
3231oveq2d 6921 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩))
3332eqeq1d 2827 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3433adantl 475 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3528, 34mpbird 249 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩)
3618, 35eqeq12d 2840 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩))
37 hashgt0n0 13446 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → 𝑊 ≠ ∅)
38 lswcl 13628 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉)
3937, 38syldan 587 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (lastS‘𝑊) ∈ 𝑉)
40393adant2 1167 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (lastS‘𝑊) ∈ 𝑉)
4140adantr 474 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ 𝑉)
42 hashgt0n0 13446 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → 𝑈 ≠ ∅)
43 lswcl 13628 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → (lastS‘𝑈) ∈ 𝑉)
4442, 43syldan 587 . . . . . . . . 9 ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (lastS‘𝑈) ∈ 𝑉)
45443adant1 1166 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (lastS‘𝑈) ∈ 𝑉)
4620, 45syl6bi 245 . . . . . . 7 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (lastS‘𝑈) ∈ 𝑉))
4746impcom 398 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑈) ∈ 𝑉)
48 s111 13675 . . . . . 6 (((lastS‘𝑊) ∈ 𝑉 ∧ (lastS‘𝑈) ∈ 𝑉) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
4941, 47, 48syl2anc 581 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
5036, 49bitrd 271 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ (lastS‘𝑊) = (lastS‘𝑈)))
5150anbi2d 624 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)) ↔ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
5251pm5.32da 576 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
5311, 52bitrd 271 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  c0 4144  cop 4403   class class class wbr 4873  cfv 6123  (class class class)co 6905  0cc0 10252  1c1 10253   < clt 10391  cmin 10585  cn 11350  0cn0 11618  cz 11704  ..^cfzo 12760  chash 13410  Word cword 13574  lastSclsw 13622  ⟨“cs1 13655   substr csubstr 13700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-lsw 13623  df-s1 13656  df-substr 13701
This theorem is referenced by:  wwlksnextinjOLD  27218  clwwlkf1OLD  27394
  Copyright terms: Public domain W3C validator