Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrd2eqwrdeqOLD Structured version   Visualization version   GIF version

Theorem 2swrd2eqwrdeqOLD 14036
 Description: Obsolete proof of 2swrd2eqwrdeq 14035 as of 12-Oct-2022. (Contributed by AV, 24-Sep-2018.) (Revised by Mario Carneiro/AV, 23-Oct-2018.) (Proof shortened by AV, 9-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2swrd2eqwrdeqOLD ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem 2swrd2eqwrdeqOLD
StepHypRef Expression
1 lencl 13550 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2 1z 11694 . . . . . . . . . 10 1 ∈ ℤ
3 nn0z 11687 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
4 zltp1le 11714 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
52, 3, 4sylancr 582 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
6 1p1e2 11442 . . . . . . . . . . . 12 (1 + 1) = 2
76a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
87breq1d 4852 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
98biimpd 221 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
105, 9sylbid 232 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1110imp 396 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
12 2nn0 11596 . . . . . . . 8 2 ∈ ℕ0
13 simpl 475 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
14 nn0sub 11629 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1512, 13, 14sylancr 582 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1611, 15mpbid 224 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
173adantr 473 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
18 0red 10331 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 0 ∈ ℝ)
19 1red 10328 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℝ)
20 nn0re 11587 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
2118, 19, 203jca 1159 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
22 0lt1 10841 . . . . . . . . 9 0 < 1
23 lttr 10403 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2423expd 405 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2521, 22, 24mpisyl 21 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
2625imp 396 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊))
27 elnnz 11673 . . . . . . 7 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2817, 26, 27sylanbrc 579 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
29 2rp 12076 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℝ+)
3120, 30ltsubrpd 12146 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 2) < (♯‘𝑊))
3231adantr 473 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) < (♯‘𝑊))
33 elfzo0 12761 . . . . . 6 (((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)) ↔ (((♯‘𝑊) − 2) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ ((♯‘𝑊) − 2) < (♯‘𝑊)))
3416, 28, 32, 33syl3anbrc 1444 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
351, 34sylan 576 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
36353adant2 1162 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
37 2swrdeqwrdeqOLD 13704 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)))))
3836, 37syld3an3 1529 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)))))
39 swrd2lsw 14034 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
40393adant2 1162 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
4140adantr 473 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
42 breq2 4846 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (1 < (♯‘𝑊) ↔ 1 < (♯‘𝑈)))
43423anbi3d 1567 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈))))
44 swrd2lsw 14034 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
45443adant1 1161 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
4643, 45syl6bi 245 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
4746impcom 397 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
48 oveq1 6884 . . . . . . . . . . . 12 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 2) = ((♯‘𝑈) − 2))
49 id 22 . . . . . . . . . . . 12 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
5048, 49opeq12d 4600 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩)
5150oveq2d 6893 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩))
5251eqeq1d 2800 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
5352adantl 474 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
5447, 53mpbird 249 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
5541, 54eqeq12d 2813 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) ↔ ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
56 fvexd 6425 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊‘((♯‘𝑊) − 2)) ∈ V)
57 fvexd 6425 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V)
58 fvexd 6425 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈‘((♯‘𝑈) − 2)) ∈ V)
59 fvexd 6425 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑈) ∈ V)
60 s2eq2s1eq 14018 . . . . . . 7 ((((𝑊‘((♯‘𝑊) − 2)) ∈ V ∧ (lastS‘𝑊) ∈ V) ∧ ((𝑈‘((♯‘𝑈) − 2)) ∈ V ∧ (lastS‘𝑈) ∈ V)) → (⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩)))
6156, 57, 58, 59, 60syl22anc 868 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩)))
62 fvex 6423 . . . . . . . . 9 (𝑊‘((♯‘𝑊) − 2)) ∈ V
63 s111 13632 . . . . . . . . 9 (((𝑊‘((♯‘𝑊) − 2)) ∈ V ∧ (𝑈‘((♯‘𝑈) − 2)) ∈ V) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2))))
6462, 58, 63sylancr 582 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2))))
65 fvoveq1 6900 . . . . . . . . . . 11 ((♯‘𝑈) = (♯‘𝑊) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6665eqcoms 2806 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6766adantl 474 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6867eqeq2d 2808 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2)) ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2))))
6964, 68bitrd 271 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2))))
70 fvex 6423 . . . . . . . 8 (lastS‘𝑊) ∈ V
71 s111 13632 . . . . . . . 8 (((lastS‘𝑊) ∈ V ∧ (lastS‘𝑈) ∈ V) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
7270, 59, 71sylancr 582 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
7369, 72anbi12d 625 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩) ↔ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7455, 61, 733bitrd 297 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) ↔ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7574anbi2d 623 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)) ↔ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
76 3anass 1117 . . . 4 (((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)) ↔ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7775, 76syl6bbr 281 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)) ↔ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7877pm5.32da 575 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
7938, 78bitrd 271 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 substr ⟨0, ((♯‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((♯‘𝑊) − 2)⟩) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   ∧ w3a 1108   = wceq 1653   ∈ wcel 2157  Vcvv 3384  ⟨cop 4373   class class class wbr 4842  ‘cfv 6100  (class class class)co 6877  ℝcr 10222  0cc0 10223  1c1 10224   + caddc 10226   < clt 10362   ≤ cle 10363   − cmin 10555  ℕcn 11311  2c2 11365  ℕ0cn0 11577  ℤcz 11663  ℝ+crp 12071  ..^cfzo 12717  ♯chash 13367  Word cword 13531  lastSclsw 13579  ⟨“cs1 13612   substr csubstr 13661  ⟨“cs2 13923 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-oadd 7802  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-card 9050  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-nn 11312  df-2 11373  df-n0 11578  df-z 11664  df-uz 11928  df-rp 12072  df-fz 12578  df-fzo 12718  df-hash 13368  df-word 13532  df-lsw 13580  df-concat 13588  df-s1 13613  df-substr 13662  df-pfx 13711  df-s2 13930 This theorem is referenced by:  numclwwlk1lem2f1OLD  27716
 Copyright terms: Public domain W3C validator