![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anorOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 3anor 1134 as of 8-Apr-2022. (Contributed by Jeff Hankins, 15-Aug-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
3anorOLD | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anor 1006 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) | |
3 | ianor 1005 | . . . . 5 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
4 | 3 | orbi1i 938 | . . . 4 ⊢ ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
5 | 2, 4 | xchbinx 326 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
6 | df-3or 1109 | . . 3 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) | |
7 | 5, 6 | xchbinxr 327 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
8 | 1, 7 | bitri 267 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∨ w3o 1107 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |