Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cnOLD Structured version   Visualization version   GIF version

Theorem 3cnOLD 11395
 Description: Obsolete version of 3cn 11394 as of 4-Oct-2022. The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3cnOLD 3 ∈ ℂ

Proof of Theorem 3cnOLD
StepHypRef Expression
1 3re 11393 . 2 3 ∈ ℝ
21recni 10343 1 3 ∈ ℂ
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2157  ℂcc 10222  3c3 11369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-i2m1 10292  ax-1ne0 10293  ax-rrecex 10296  ax-cnre 10297 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-iota 6064  df-fv 6109  df-ov 6881  df-2 11376  df-3 11377 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator