![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 3cn 11394 as of 4-Oct-2022. The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3cnOLD | ⊢ 3 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11393 | . 2 ⊢ 3 ∈ ℝ | |
2 | 1 | recni 10343 | 1 ⊢ 3 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 ℂcc 10222 3c3 11369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-i2m1 10292 ax-1ne0 10293 ax-rrecex 10296 ax-cnre 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-ov 6881 df-2 11376 df-3 11377 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |