MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expOLD Structured version   Visualization version   GIF version

Theorem 3expOLD 1438
Description: Obsolete version of 3exp 1141 as of 21-Jun-2022. (Contributed by NM, 30-May-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
3comOLD.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3expOLD (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem 3expOLD
StepHypRef Expression
1 pm3.2an3 1432 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜑𝜓𝜒))))
2 3comOLD.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl8 76 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-an 385  df-3an 1102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator