MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expiaOLD Structured version   Visualization version   GIF version

Theorem 3expiaOLD 1115
Description: Obsolete version of 3expia 1114 as of 22-Jun-2022. (Contributed by NM, 19-May-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3expiaOLD ((𝜑𝜓) → (𝜒𝜃))

Proof of Theorem 3expiaOLD
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213exp 1112 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imp 393 1 ((𝜑𝜓) → (𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator