MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3simpbOLD Structured version   Visualization version   GIF version

Theorem 3simpbOLD 1145
Description: Obsolete version of 3simpb 1144 as of 21-Jun-2022. (Contributed by NM, 21-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3simpbOLD ((𝜑𝜓𝜒) → (𝜑𝜒))

Proof of Theorem 3simpbOLD
StepHypRef Expression
1 3ancomb 1085 . 2 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
2 3simpa 1142 . 2 ((𝜑𝜒𝜓) → (𝜑𝜒))
31, 2sylbi 207 1 ((𝜑𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator