![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4cnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 4cn 11526 as of 4-Oct-2022. The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
4cnOLD | ⊢ 4 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 11525 | . 2 ⊢ 4 ∈ ℝ | |
2 | 1 | recni 10454 | 1 ⊢ 4 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 ℂcc 10333 4c4 11497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-i2m1 10403 ax-1ne0 10404 ax-rrecex 10407 ax-cnre 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 df-ov 6979 df-2 11503 df-3 11504 df-4 11505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |