MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cnOLD Structured version   Visualization version   GIF version

Theorem 4cnOLD 11527
Description: Obsolete version of 4cn 11526 as of 4-Oct-2022. The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
4cnOLD 4 ∈ ℂ

Proof of Theorem 4cnOLD
StepHypRef Expression
1 4re 11525 . 2 4 ∈ ℝ
21recni 10454 1 4 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2050  cc 10333  4c4 11497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2751  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-i2m1 10403  ax-1ne0 10404  ax-rrecex 10407  ax-cnre 10408
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-iota 6152  df-fv 6196  df-ov 6979  df-2 11503  df-3 11504  df-4 11505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator