MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8cnOLD Structured version   Visualization version   GIF version

Theorem 8cnOLD 11536
Description: Obsolete version of 8cn 11535 as of 4-Oct-2022. The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
8cnOLD 8 ∈ ℂ

Proof of Theorem 8cnOLD
StepHypRef Expression
1 8re 11534 . 2 8 ∈ ℝ
21recni 10446 1 8 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2048  cc 10325  8c8 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-ext 2745  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-i2m1 10395  ax-1ne0 10396  ax-rrecex 10399  ax-cnre 10400
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-iota 6146  df-fv 6190  df-ov 6973  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator