Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abeq12 Structured version   Visualization version   GIF version

Theorem abeq12 34588
Description: Equality deduction for class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Assertion
Ref Expression
abeq12 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abeq12
StepHypRef Expression
1 abbi 2902 . 2 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
21biimpi 208 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1599   = wceq 1601  {cab 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator