MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2OLD Structured version   Visualization version   GIF version

Theorem abrexex2OLD 7390
Description: Obsolete proof of abrexex2 7388 as of 8-Dec-2021. (Contributed by NM, 12-Sep-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
abrexex2OLD.1 𝐴 ∈ V
abrexex2OLD.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abrexex2OLD {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 2005 . . . 4 𝑧𝑥𝐴 𝜑
2 nfcv 2959 . . . . 5 𝑦𝐴
3 nfs1v 2288 . . . . 5 𝑦[𝑧 / 𝑦]𝜑
42, 3nfrex 3205 . . . 4 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
5 sbequ12 2280 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
65rexbidv 3251 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
71, 4, 6cbvab 2941 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
8 df-clab 2804 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
98rexbii 3240 . . . 4 (∃𝑥𝐴 𝑧 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑)
109abbii 2934 . . 3 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
117, 10eqtr4i 2842 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
12 df-iun 4725 . . 3 𝑥𝐴 {𝑦𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
13 abrexex2OLD.1 . . . 4 𝐴 ∈ V
14 abrexex2OLD.2 . . . 4 {𝑦𝜑} ∈ V
1513, 14iunex 7387 . . 3 𝑥𝐴 {𝑦𝜑} ∈ V
1612, 15eqeltrri 2893 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} ∈ V
1711, 16eqeltri 2892 1 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  [wsb 2061  wcel 2157  {cab 2803  wrex 3108  Vcvv 3402   ciun 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pr 5109  ax-un 7189
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator