![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5ant235OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ad5ant235 1475 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ad5ant.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
ad5ant235OLD | ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1149 | . . . . . . 7 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | a1ddd 80 | . . . . . 6 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜃)))) |
4 | 3 | a1ddd 80 | . . . . 5 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜂 → (𝜏 → 𝜃))))) |
5 | 4 | com5r 104 | . . . 4 ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → (𝜂 → 𝜃))))) |
6 | 5 | com45 97 | . . 3 ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜂 → (𝜒 → 𝜃))))) |
7 | 6 | imp 396 | . 2 ⊢ ((𝜏 ∧ 𝜑) → (𝜓 → (𝜂 → (𝜒 → 𝜃)))) |
8 | 7 | imp41 417 | 1 ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |