MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aev2ALT Structured version   Visualization version   GIF version

Theorem aev2ALT 2040
Description: Alternate proof of aev2 2039, bypassing hbaevg 2034. (Contributed by BJ, 23-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
aev2ALT (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑡 𝑢 = 𝑣)
Distinct variable group:   𝑥,𝑦

Proof of Theorem aev2ALT
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aev 2033 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑤 𝑤 = 𝑠)
2 aev 2033 . . 3 (∀𝑤 𝑤 = 𝑠 → ∀𝑡 𝑢 = 𝑣)
32alrimiv 1905 . 2 (∀𝑤 𝑤 = 𝑠 → ∀𝑧𝑡 𝑢 = 𝑣)
41, 3syl 17 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑡 𝑢 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator