![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > annotanannotOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of annotanannot 864 as of 1-Apr-2022. (Contributed by AV, 8-Mar-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
annotanannotOLD | ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 1005 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | 1 | anbi2i 617 | . 2 ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ (¬ 𝜑 ∨ ¬ 𝜓))) |
3 | andi 1031 | . 2 ⊢ ((𝜑 ∧ (¬ 𝜑 ∨ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓))) | |
4 | pm3.24 392 | . . . . 5 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
5 | 4 | pm2.21i 117 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝜑) → (𝜑 ∧ ¬ 𝜓)) |
6 | id 22 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝜓) → (𝜑 ∧ ¬ 𝜓)) | |
7 | 5, 6 | jaoi 884 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓)) → (𝜑 ∧ ¬ 𝜓)) |
8 | olc 895 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓))) | |
9 | 7, 8 | impbii 201 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
10 | 2, 3, 9 | 3bitri 289 | 1 ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 385 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |