Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc15OLD Structured version   Visualization version   GIF version

Theorem axc15OLD 2358
 Description: Obsolete proof of axc15 2357 as of 26-Mar-2023. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc15OLD (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))

Proof of Theorem axc15OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax6ev 1930 . 2 𝑧 𝑧 = 𝑦
2 dveeq2 2308 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
3 ax12v 2107 . . . . 5 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
4 equequ2 1983 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
54sps 2113 . . . . . 6 (∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
6 nfa1 2088 . . . . . . . 8 𝑥𝑥 𝑧 = 𝑦
75imbi1d 334 . . . . . . . 8 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
86, 7albid 2154 . . . . . . 7 (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
98imbi2d 333 . . . . . 6 (∀𝑥 𝑧 = 𝑦 → ((𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
105, 9imbi12d 337 . . . . 5 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
113, 10mpbii 225 . . . 4 (∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
122, 11syl6 35 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
1312exlimdv 1892 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
141, 13mpi 20 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198  ∀wal 1505  ∃wex 1742 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-10 2079  ax-12 2106  ax-13 2301 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator