Step | Hyp | Ref
| Expression |
1 | | ax6ev 1930 |
. 2
⊢
∃𝑧 𝑧 = 𝑦 |
2 | | dveeq2 2308 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
3 | | ax12v 2107 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
4 | | equequ2 1983 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
5 | 4 | sps 2113 |
. . . . . 6
⊢
(∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
6 | | nfa1 2088 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥 𝑧 = 𝑦 |
7 | 5 | imbi1d 334 |
. . . . . . . 8
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
8 | 6, 7 | albid 2154 |
. . . . . . 7
⊢
(∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
9 | 8 | imbi2d 333 |
. . . . . 6
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
10 | 5, 9 | imbi12d 337 |
. . . . 5
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
11 | 3, 10 | mpbii 225 |
. . . 4
⊢
(∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
12 | 2, 11 | syl6 35 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
13 | 12 | exlimdv 1892 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
14 | 1, 13 | mpi 20 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |