Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axext4 Structured version   Visualization version   GIF version

Theorem axext4 2807
 Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2803 and df-cleq 2818. (Contributed by NM, 14-Nov-2008.)
Assertion
Ref Expression
axext4 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem axext4
StepHypRef Expression
1 elequ2 2180 . . 3 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21alrimiv 2028 . 2 (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
3 axext3 2805 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
42, 3impbii 201 1 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198  ∀wal 1656 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881 This theorem is referenced by:  axc11next  39446
 Copyright terms: Public domain W3C validator