![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axext4 | Structured version Visualization version GIF version |
Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2803 and df-cleq 2818. (Contributed by NM, 14-Nov-2008.) |
Ref | Expression |
---|---|
axext4 | ⊢ (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2180 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | alrimiv 2028 | . 2 ⊢ (𝑥 = 𝑦 → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
3 | axext3 2805 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
4 | 2, 3 | impbii 201 | 1 ⊢ (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 |
This theorem is referenced by: axc11next 39446 |
Copyright terms: Public domain | W3C validator |