![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axext4dist | Structured version Visualization version GIF version |
Description: axext4 2781 with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010.) |
Ref | Expression |
---|---|
axext4dist | ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc9 2389 | . . . 4 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
2 | 1 | imp 396 | . . 3 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
3 | nfnae 2441 | . . . . 5 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑥 | |
4 | nfnae 2441 | . . . . 5 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
5 | 3, 4 | nfan 1999 | . . . 4 ⊢ Ⅎ𝑧(¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
6 | elequ2 2171 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
8 | 5, 7 | alimd 2247 | . . 3 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧 𝑥 = 𝑦 → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
9 | 2, 8 | syld 47 | . 2 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
10 | axextdist 32217 | . 2 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | |
11 | 9, 10 | impbid 204 | 1 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-cleq 2792 df-clel 2795 df-nfc 2930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |