Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axtgupdim2OLD Structured version   Visualization version   GIF version

Theorem axtgupdim2OLD 31295
Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
istrkg2d.p 𝑃 = (Base‘𝐺)
istrkg2d.d = (dist‘𝐺)
istrkg2d.i 𝐼 = (Itv‘𝐺)
axtgupdim2OLD.x (𝜑𝑋𝑃)
axtgupdim2OLD.y (𝜑𝑌𝑃)
axtgupdim2OLD.z (𝜑𝑍𝑃)
axtgupdim2OLD.u (𝜑𝑈𝑃)
axtgupdim2OLD.v (𝜑𝑉𝑃)
axtgupdim2OLD.0 (𝜑𝑈𝑉)
axtgupdim2OLD.1 (𝜑 → (𝑋 𝑈) = (𝑋 𝑉))
axtgupdim2OLD.2 (𝜑 → (𝑌 𝑈) = (𝑌 𝑉))
axtgupdim2OLD.3 (𝜑 → (𝑍 𝑈) = (𝑍 𝑉))
axtgupdim2OLD.g (𝜑𝐺 ∈ TarskiG2D)
Assertion
Ref Expression
axtgupdim2OLD (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2OLD
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2OLD.1 . . 3 (𝜑 → (𝑋 𝑈) = (𝑋 𝑉))
2 axtgupdim2OLD.2 . . 3 (𝜑 → (𝑌 𝑈) = (𝑌 𝑉))
3 axtgupdim2OLD.3 . . 3 (𝜑 → (𝑍 𝑈) = (𝑍 𝑉))
41, 2, 33jca 1164 . 2 (𝜑 → ((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)))
5 axtgupdim2OLD.0 . 2 (𝜑𝑈𝑉)
6 axtgupdim2OLD.g . . . . . 6 (𝜑𝐺 ∈ TarskiG2D)
7 istrkg2d.p . . . . . . 7 𝑃 = (Base‘𝐺)
8 istrkg2d.d . . . . . . 7 = (dist‘𝐺)
9 istrkg2d.i . . . . . . 7 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg2d 31293 . . . . . 6 (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10sylib 210 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
1211simprrd 792 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
13 axtgupdim2OLD.x . . . . 5 (𝜑𝑋𝑃)
14 axtgupdim2OLD.y . . . . 5 (𝜑𝑌𝑃)
15 axtgupdim2OLD.z . . . . 5 (𝜑𝑍𝑃)
16 oveq1 6912 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑢) = (𝑋 𝑢))
17 oveq1 6912 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑣) = (𝑋 𝑣))
1816, 17eqeq12d 2840 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥 𝑢) = (𝑥 𝑣) ↔ (𝑋 𝑢) = (𝑋 𝑣)))
19183anbi1d 1570 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣))))
2019anbi1d 625 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣)))
21 oveq1 6912 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
2221eleq2d 2892 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
23 eleq1 2894 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
24 oveq1 6912 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2524eleq2d 2892 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2622, 23, 253orbi123d 1565 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
2720, 26imbi12d 336 . . . . . . 7 (𝑥 = 𝑋 → (((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
28272ralbidv 3198 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
29 oveq1 6912 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 𝑢) = (𝑌 𝑢))
30 oveq1 6912 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 𝑣) = (𝑌 𝑣))
3129, 30eqeq12d 2840 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑦 𝑢) = (𝑦 𝑣) ↔ (𝑌 𝑢) = (𝑌 𝑣)))
32313anbi2d 1571 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣))))
3332anbi1d 625 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣)))
34 oveq2 6913 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
3534eleq2d 2892 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
36 oveq2 6913 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
3736eleq2d 2892 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
38 eleq1 2894 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
3935, 37, 383orbi123d 1565 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
4033, 39imbi12d 336 . . . . . . 7 (𝑦 = 𝑌 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
41402ralbidv 3198 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
42 oveq1 6912 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑢) = (𝑍 𝑢))
43 oveq1 6912 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑣) = (𝑍 𝑣))
4442, 43eqeq12d 2840 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 𝑢) = (𝑧 𝑣) ↔ (𝑍 𝑢) = (𝑍 𝑣)))
45443anbi3d 1572 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣))))
4645anbi1d 625 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣)))
47 eleq1 2894 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
48 oveq1 6912 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
4948eleq2d 2892 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
50 oveq2 6913 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5150eleq2d 2892 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
5247, 49, 513orbi123d 1565 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
5346, 52imbi12d 336 . . . . . . 7 (𝑧 = 𝑍 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
54532ralbidv 3198 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5528, 41, 54rspc3v 3542 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5613, 14, 15, 55syl3anc 1496 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5712, 56mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
58 axtgupdim2OLD.u . . . 4 (𝜑𝑈𝑃)
59 axtgupdim2OLD.v . . . 4 (𝜑𝑉𝑃)
60 oveq2 6913 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑋 𝑢) = (𝑋 𝑈))
6160eqeq1d 2827 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑋 𝑢) = (𝑋 𝑣) ↔ (𝑋 𝑈) = (𝑋 𝑣)))
62 oveq2 6913 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑌 𝑢) = (𝑌 𝑈))
6362eqeq1d 2827 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑌 𝑢) = (𝑌 𝑣) ↔ (𝑌 𝑈) = (𝑌 𝑣)))
64 oveq2 6913 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑍 𝑢) = (𝑍 𝑈))
6564eqeq1d 2827 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑍 𝑢) = (𝑍 𝑣) ↔ (𝑍 𝑈) = (𝑍 𝑣)))
6661, 63, 653anbi123d 1566 . . . . . . 7 (𝑢 = 𝑈 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ↔ ((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣))))
67 neeq1 3061 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
6866, 67anbi12d 626 . . . . . 6 (𝑢 = 𝑈 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣)))
6968imbi1d 333 . . . . 5 (𝑢 = 𝑈 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
70 oveq2 6913 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑋 𝑣) = (𝑋 𝑉))
7170eqeq2d 2835 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑋 𝑈) = (𝑋 𝑣) ↔ (𝑋 𝑈) = (𝑋 𝑉)))
72 oveq2 6913 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑌 𝑣) = (𝑌 𝑉))
7372eqeq2d 2835 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑌 𝑈) = (𝑌 𝑣) ↔ (𝑌 𝑈) = (𝑌 𝑉)))
74 oveq2 6913 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑍 𝑣) = (𝑍 𝑉))
7574eqeq2d 2835 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑍 𝑈) = (𝑍 𝑣) ↔ (𝑍 𝑈) = (𝑍 𝑉)))
7671, 73, 753anbi123d 1566 . . . . . . 7 (𝑣 = 𝑉 → (((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ↔ ((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉))))
77 neeq2 3062 . . . . . . 7 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
7876, 77anbi12d 626 . . . . . 6 (𝑣 = 𝑉 → ((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) ↔ (((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉)))
7978imbi1d 333 . . . . 5 (𝑣 = 𝑉 → (((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8069, 79rspc2v 3539 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8158, 59, 80syl2anc 581 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8257, 81mpd 15 . 2 (𝜑 → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
834, 5, 82mp2and 692 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3o 1112  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wral 3117  wrex 3118  Vcvv 3414  cfv 6123  (class class class)co 6905  Basecbs 16222  distcds 16314  Itvcitv 25748  TarskiG2Dcstrkg2d 31291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-nul 5013
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131  df-ov 6908  df-trkg2d 31292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator