![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bamalipOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of bamalip 2786 as of 16-Sep-2022. (Contributed by David A. Wheeler, 28-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bamalip.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
bamalip.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
bamalip.e | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
bamalipOLD | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bamalip.e | . 2 ⊢ ∃𝑥𝜑 | |
2 | bamalip.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | 2 | spi 2227 | . . . 4 ⊢ (𝜑 → 𝜓) |
4 | bamalip.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
5 | 4 | spi 2227 | . . . 4 ⊢ (𝜓 → 𝜒) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝜒) |
7 | 6 | ancri 547 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜑)) |
8 | 1, 7 | eximii 1937 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1656 ∃wex 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-12 2222 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |