Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bamalipOLD Structured version   Visualization version   GIF version

Theorem bamalipOLD 2787
 Description: Obsolete proof of bamalip 2786 as of 16-Sep-2022. (Contributed by David A. Wheeler, 28-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bamalip.maj 𝑥(𝜑𝜓)
bamalip.min 𝑥(𝜓𝜒)
bamalip.e 𝑥𝜑
Assertion
Ref Expression
bamalipOLD 𝑥(𝜒𝜑)

Proof of Theorem bamalipOLD
StepHypRef Expression
1 bamalip.e . 2 𝑥𝜑
2 bamalip.maj . . . . 5 𝑥(𝜑𝜓)
32spi 2227 . . . 4 (𝜑𝜓)
4 bamalip.min . . . . 5 𝑥(𝜓𝜒)
54spi 2227 . . . 4 (𝜓𝜒)
63, 5syl 17 . . 3 (𝜑𝜒)
76ancri 547 . 2 (𝜑 → (𝜒𝜑))
81, 7eximii 1937 1 𝑥(𝜒𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386  ∀wal 1656  ∃wex 1880 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-12 2222 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator